CELL ENERGY

Unit 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

cellulose fibers in plant cell wall

Cellulose structure

ENERGY?

- Energy is used by all cells to:
 - Perform cell jobs or do work
 - > Run chemical reactions of metabolism
- Organisms get energy through <u>food</u>
 - They either make their own food or eat food
 - Autotrophs (producers) make their own food, usually through photosynthesis
 - Heterotrophs (consumers) eat autotrophs or other heterotrophs

- The main form (molecule) of energy accepted for cell use is <u>ATP</u>
- Outline the <u>nucleotide</u> below
- Energy is stored in covalent bonds when I or 2 Phosphate groups join the nucleotide
- Energy for cell use is released when these bonds are <u>broken</u>

When an ADP molecule is recharged with energy and capped with a phosphate group = phosphorylation

Lets Review a couple "SUPERHERO" cell organelles

Mitochondria and chloroplasts are complementary organelles that both use membranes with enzyme assembly lines to process energy in opposite ways

8. PHOTOSYNTHESIS AND AEROBIC RESPIRATION

MITOCHONDRIA VS. CHLOROPLASTS

MITOCHONDRIA

- Found in <u>plant</u> & <u>animal</u> cells
- Has own DNA
- Has <u>inner membrane</u>
- Converts glucose into ATP

CHLOROPLASTS

- Found only in <u>plant</u> cells
- Has own DNA
- Has <u>inner membranes</u>
- Converts <u>light energy</u> into <u>chemical stored</u> <u>energy</u> (glucose)

PHOTOSYNTHESIS!!!

Photosynthesis

Can you see WHERE Photosynthesis reactions

will occur?

• The location and structure of chloroplasts

Can you find the thylakoid membrane?

This is where the action of photosynthesis takes place

Day 2

Day 3

Day 3

Thursday

Thursday

Let's label the chloroplast

Let's find the ITS

Photosynthesis occurs in 2 stages

Can you see who carries the energy and electrons from the light reactions to the Calvin cycle?

Let's label our diagram

Stage One: Light Reactions

A. Light energy is captured

Are you a believer in ROYGBIV?

Wavelength	Chlorophyll A % Absorption	Chlorophyll B % Absorption
400 nanometers	30	0
450 nanometers	65	40
500 nanometers	0	85
550 nanometers	0	0
600 nanometers	10	10
650 nanometers	45	25
700 nanometers	10	10

Why is my maple tree RED in the fall?

- What color of light does chlorophyll b pigment capture the most effectively?
- What color of light does chlorophyll b pigment reflect the most effectively?

Stage One: Light Reactions

- A. Light energy is captured
 - Chlorophyll pigments capture blue and red colors
 - Carotenoid pigments add even more energy from <u>Blue-green</u> colors

Why is my maple tree RED in the fall?

Day 2

Day 3

Day 3

Thursday

Thursday

Time to harvest

Stage One: Light Reactions

B. Energy plays "<u>frogger</u>" or "<u>Hot-potato</u>" across the chlorophyll molecules until it lands on the photosystem reaction center where it causes an energized electron to **jump away**

Ever seen chlorophyll get excited?

• Video

Aurora borealis

A quick recap of the key ideas

Stage One: Light Reactions

C. 2 photosystems linked by an electron transport chain (ETC) funnel energy and electrons into 2 types of "energized electron dumptrucks"

ATP

NADPH

Stage One: Light Reactions

- C. 2 photosystems linked by an electron transport chain (ETC) funnel energy and electrons into 2 types of "energized electron dumptrucks"
 - ATP

Can you see what H₂O is doing in the photosynthesis reaction?

D. H₂O is split apart to donate an **electron** to replace the one energized and ejected by photosystem 2..

Oxygen is the waste product released by the plant

Let's Review

Thursday

Thursday

Time to harvest

Where in the chloroplast are we going next?

Does anyone see phosphorylation?

It works a little bit like this

Calvin Cycle

Stage Two: Calvin Cycle

E. ATP and NADPH arrive to dump their energy and electrons into the Calvin Cycle (AKA sugar factory) These materials supercharge each CO₂ that enters and several rounds of the Calvin cycle are needed to produce I glucose molecule

Lets review Photosynthesis

PS Review video

Light Rxn song

Calvin Cycle Song

Ultimately photosynthesis converts light energy into stored

What do Plants do with the GLUCOSE that they make?

 Glucose is converted by a mitochondria during cellular respiration into ATP for various cell jobs such as growth

What do Plants do with the GLUCOSE that they make?

- Glucose energy is used to make a variety of plant products:
- a) Fats and oils for seeds

b) Fructose for the fruit

Cellulose for cell walls

What do Plants do with the GLUCOSE that they make?

Glucose that isn't used right away is stored as starch

FACTORS THAT AFFECT PHOTOSYNTHESIS

SPEED UP PHOTOSYNTHESIS

- Increased light
- Increased heat
- Increased carbon dioxide
- Increased water

SLOW DOWN PHOTOSYNTHESIS

- Decreased light
- Excessive light or heat
- Low temperatures
- Low water levels
- Low carbon dioxide levels
- Water pollution

WHAT DOESTHIS GRAPH SHOW US ABOUT PHOTOSYNTHESIS?

Light intensity vs. rate of photosynthesis

As light intensity increases, so does photosynthesis up to a certain point, then photosynthesis levels off

WHAT DOESTHIS GRAPH SHOW US ABOUT PHOTOSYNTHESIS?

Temperature vs. rate of photosynthesis

Temperature

•Rate of photosynthesis peaks at a certain temperature; anything beyond that temperature range doesn't allow photosynthesis to happen at peak levels

PS Demo

PS and Light COLOR

PS powered bldg

PS MS

PS Rap I

PS Rap TF

Wavelength	Chlorophyll A % Absorption	Chlorophyll B % Absorption
400 nanometers	30	0
450 nanometers	65	40
500 nanometers	0	85
550 nanometers	0	0
600 nanometers	10	10
650 nanometers	45	25
700 nanometers	10	10

 Mitochondria and chloroplasts are complementary organelles that both use membranes with enzyme assembly lines to process energy in opposite ways

8. PHOTOSYNTHESIS AND AEROBIC RESPIRATION

Let's <u>Compare</u> Photosynthesis and Cellular Respiration

Topics	Photosynthesis	Cell Respiration
I) INPUT material?	CO ₂ H ₂ O	Glucose O ₂
2) OUTPUT material?	Glucose O ₂	CO ₂ H ₂ O
3) Energy direction?	Absorbed	Released
4) Energy TERM?	Endergonic	Exergonic
5) Chemical bonds are?	formed	broken
6) Organelle needed?	Chloroplast	Mitochondria
7) Cell type?	Plant Only	Both Plant & Animal

- What color of light does chlorophyll b pigment capture the most effectively?
- What color of light does chlorophyll b pigment reflect the most effectively?

