Itanscription. Han Cliff Itanslation ## But first, a little bit of review... - YOU & your cells are made mostly of PROTEIN - Proteins are made of <u>Amino Acids</u> (20 kinds) - \bullet AA + AA + AA + AA = polypeptide Different Amino Acids = different Protein SHAPES = different function ## Differences between DNA and RNA - DeoxyriboNucleic Acid - 2 strands - 5-C sugar is deoxyribose - Nitrogen bases: - Cytosine - Guanine - Adenine - Thymine - RiboNucleic Acid - 1 strand - 5-C sugar is ribose - Nitrogen bases: - Cytosine - Guanine - Adenine - Uracil #### Protein Production: The BIG PICTURE Gene = <u>piece</u> of DNA code with instructions for making a trait Each gene has a code for making 1 specific polypeptide - Recent studies of human DNA indicate there are $\sim 24,000$ genes in one blueprint. - Protein Production is a 2-part story: - Part I = <u>Transcription</u> (in the <u>nucleus</u>) - Part II = <u>Translation</u> (at a <u>ribosome</u>) ## Protein Production Part I: TRANSCRIPTION The DNA gene code is copied into messenger RNA (from here forth known as mRNA) **mRNA** - In transcription, the DNA helix <u>unwinds</u> and unzips - RNA nucleotides line up along one strand of the DNA following the Base-pairing rules - After the gene code is copied into mRNA, the single-stranded mRNA peels away and the DNA strands rejoin Next, the mRNA carries a copy of the gene code instructions from the <u>nucleus out to a</u> <u>ribosome</u> (the tiny protein-making factories) You are here. enzymes muscle $mRNA^{t}$ Transcription mRNAProteins DNA Translation "copy the DNA code" change languages" gate protein tŘNA —A A #### Part II: TRANSLATION convert from mRNA language into <u>protein</u> language - The mRNA is read 3 letters at a time (CODON) - Each CODON represents one specific Amino Acid - There are <u>64</u> possible 3 letter combinations BUT only <u>20</u> amino acids.... - SO, some Codons code for more than one amino acid | | | | SECON | D BASE | | | |-------|---|---------------------------|--------------------------|------------------------|-------------------------------|------------------| | | _ | U | С | Α | G | | | | U | UUU Phe | UCU Ser | UAU Tyr | UGU Cys | u
c | | | | UUA Leu | UCA UCG | UAA Stop
UAG Stop | UGA Stop
UGG Trp | A
G | | BASE | С | CUU CUA CUG | CCU
CCA
CCG | CAU His
CAC GIn | CGU
CGC
CGA
CGG | D ⊳ ∩ ⊂
BASE | | FIRST | A | AUU IIIe AUA Met or start | ACU
ACC
ACA
ACG | AAU Asn
AAA Lys | AGU Ser
AGC AGA
AGG Arg | D C & G | | | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU Asp
GAC GAA GIU | GGU
GGC
GGA
GGG | U
C
A
G | | | | | | | | | | First | Second base | | | | | | |-------|-----------------------------------|--------------------------|--|--|------------------|--| | base | U | С | A | G | base | | | U | UUU Phenylalanine UUC UUA Leucine | UCU
UCC
UCA
UCG | UAU Tyrosine UAC UAA Stop | UGU Cysteine UGC Stop UGA -Stop UGG-Tryptophan | U
C
A
G | | | С | CUU
CUC
CUA
CUG | CCU
CCC
CCA
CCG | CAU Histidine CAC CAA Glutamine | CGU
CGC
CGA
CGG | U
C
A
G | | | A | AUU
AUC
AUA
Start | ACU
ACC
ACA
ACG | AAU Asparagine AAC AAA AAG Lysine | AGU Serine
AGC AGA Arginine | U
C
A
G | | | G | GUU
GUC
GUA
GUG
GUG | GCU
GCC
GCA
GCG | GAU Aspartic
GAC Acid
GAA Glutamic
GAG Acid | GGU
GGC
GGA
GGG | U
C
A
G | | - Once the mRNA reaches the <u>ribosome</u>, and the <u>CODONS</u> are read, - Transfer RNA (tRNA) "<u>Taxi</u>" service delivers the correct <u>Amino Acids</u> to the ribosome - tRNA binds to the mRNA CODON with its matching 3-letter AntiCODON - tRNA releases its <u>AA</u> "passenger" which bonds to other AA to make a <u>polypeptide</u> - the <u>empty</u> tRNA leaves the ribosome to pick up other <u>AA</u> passengers - The protein is completed when a <a>STOP codon is read ### Translation