# Itanscription.

Han Cliff



Itanslation

## But first, a little bit of review...

- YOU & your cells are made mostly of PROTEIN
- Proteins are made of <u>Amino Acids</u> (20 kinds)
- $\bullet$  AA + AA + AA + AA = polypeptide











Different Amino Acids = different Protein SHAPES = different function

## Differences between DNA and RNA

- DeoxyriboNucleic Acid
- 2 strands
- 5-C sugar is deoxyribose
- Nitrogen bases:
  - Cytosine
  - Guanine
  - Adenine
  - Thymine



- RiboNucleic Acid
- 1 strand
- 5-C sugar is ribose
- Nitrogen bases:
  - Cytosine
  - Guanine
  - Adenine
  - Uracil

#### Protein Production: The BIG PICTURE

 Gene = <u>piece</u> of DNA code with instructions for making a trait

Each gene has a code for making 1 specific polypeptide







- Recent studies of human DNA indicate there are  $\sim 24,000$  genes in one blueprint.
- Protein Production is a 2-part story:
  - Part I = <u>Transcription</u> (in the <u>nucleus</u>)
  - Part II = <u>Translation</u> (at a <u>ribosome</u>)



## Protein Production

Part I: TRANSCRIPTION

The DNA gene code is copied into

messenger RNA (from here forth known as mRNA)



**mRNA** 

- In transcription, the DNA helix <u>unwinds</u> and unzips
  - RNA nucleotides line up along one strand of the DNA following the Base-pairing rules
  - After the gene code is copied into mRNA, the single-stranded mRNA peels away and the DNA strands rejoin



Next, the mRNA carries a copy of the gene code instructions from the <u>nucleus out to a</u> <u>ribosome</u> (the tiny protein-making factories)

You are here. enzymes muscle  $mRNA^{t}$ Transcription mRNAProteins DNA Translation "copy the DNA code" change languages" gate protein tŘNA —A A

#### Part II: TRANSLATION

convert from mRNA language into <u>protein</u> language

- The mRNA is read 3 letters at a time (CODON)
- Each CODON represents one specific Amino Acid
  - There are <u>64</u> possible 3 letter combinations BUT only <u>20</u> amino acids....
    - SO, some Codons code for more than one amino acid

|       |   |                           | SECON                    | D BASE                 |                               |                  |
|-------|---|---------------------------|--------------------------|------------------------|-------------------------------|------------------|
|       | _ | U                         | С                        | Α                      | G                             |                  |
|       | U | UUU Phe                   | UCU Ser                  | UAU Tyr                | UGU Cys                       | u<br>c           |
|       |   | UUA Leu                   | UCA UCG                  | UAA Stop<br>UAG Stop   | UGA Stop<br>UGG Trp           | A<br>G           |
| BASE  | С | CUU CUA CUG               | CCU<br>CCA<br>CCG        | CAU His<br>CAC GIn     | CGU<br>CGC<br>CGA<br>CGG      | D ⊳ ∩ ⊂<br>BASE  |
| FIRST | A | AUU IIIe AUA Met or start | ACU<br>ACC<br>ACA<br>ACG | AAU Asn<br>AAA Lys     | AGU Ser<br>AGC AGA<br>AGG Arg | D C & G          |
|       | G | GUU<br>GUC<br>GUA<br>GUG  | GCU<br>GCC<br>GCA<br>GCG | GAU Asp<br>GAC GAA GIU | GGU<br>GGC<br>GGA<br>GGG      | U<br>C<br>A<br>G |
|       |   |                           |                          |                        |                               |                  |

| First | Second base                       |                          |                                                      |                                                |                  |  |
|-------|-----------------------------------|--------------------------|------------------------------------------------------|------------------------------------------------|------------------|--|
| base  | U                                 | С                        | A                                                    | G                                              | base             |  |
| U     | UUU Phenylalanine UUC UUA Leucine | UCU<br>UCC<br>UCA<br>UCG | UAU Tyrosine UAC UAA Stop                            | UGU Cysteine UGC Stop UGA -Stop UGG-Tryptophan | U<br>C<br>A<br>G |  |
| С     | CUU<br>CUC<br>CUA<br>CUG          | CCU<br>CCC<br>CCA<br>CCG | CAU Histidine CAC CAA Glutamine                      | CGU<br>CGC<br>CGA<br>CGG                       | U<br>C<br>A<br>G |  |
| A     | AUU<br>AUC<br>AUA<br>Start        | ACU<br>ACC<br>ACA<br>ACG | AAU Asparagine AAC AAA AAG Lysine                    | AGU Serine<br>AGC AGA Arginine                 | U<br>C<br>A<br>G |  |
| G     | GUU<br>GUC<br>GUA<br>GUG<br>GUG   | GCU<br>GCC<br>GCA<br>GCG | GAU Aspartic<br>GAC Acid<br>GAA Glutamic<br>GAG Acid | GGU<br>GGC<br>GGA<br>GGG                       | U<br>C<br>A<br>G |  |

- Once the mRNA reaches the <u>ribosome</u>, and the <u>CODONS</u> are read,
- Transfer RNA (tRNA) "<u>Taxi</u>" service delivers the correct <u>Amino Acids</u> to the ribosome





- tRNA binds to the mRNA CODON with its matching 3-letter AntiCODON
- tRNA releases its <u>AA</u> "passenger" which bonds to other AA to make a <u>polypeptide</u>
- the <u>empty</u> tRNA leaves the ribosome to pick up other <u>AA</u> passengers
- The protein is completed when a <a>STOP</a> codon is read

### Translation

