

DIRECTIONS: Read sections $10.2 \rightarrow 10.3$ in the textbook and answer the following questions

1) Draw a diagam of one nucleotide (the DNA "building block") and label the 3 subunits

- 2) **Circle** the parts of the nucleotide (above) that make up the <u>backbone</u> of DNA
- 3) Name the **5-carbon sugar** molecule found in DNA: _____
- 4) Compare and Contrast the structure of DNA and RNA in the Venn diagram below

5) Summarize the work of James Watson & Francis Crick that earned them a Nobel Prize. WHEN did they publish their news?

6) Below is a short sequence of DNA code. Write the **complementary sequence** for the other DNA strand? T G C T A A C G T

DIRECTIONS: Read sections $10.6 \rightarrow 10.15$ in the textbook and answer the following questions

 Draw a diagram summarizing the key activities of <u>TRANSCRIPTION</u> and label the 4 following items in your diagram: (promoter, terminator, mRNA, template DNA) (see Figures 10.9A & 10.9B)

8) Summarize the 4 key activities that happen during <u>TRANSCRIPTION</u>: (see 10.9)

9) Draw a **diagram** summarizing the key activities of <u>**TRANSLATION**</u> and label the **7** following items in your diagram: (ribosome, mRNA, tRNA, amino acid, polypeptide, codon, anticodon) (see Figure 10.15)

10) Summarize the **4** key activities that happen during <u>TRANSLATION</u>: (see 10.14)

Directions: Review the assigned DNA reading by indicating whether each DNA statement below is T/F and the textbook page where the answer can be found.

	DNA Statements (Chapter 10)	<u>After</u> reading T/F	Textbook page
1	Erwin Chargaff's rules suggest that for any kind of DNA sample tested, the $\#$ of A = T and the $\#$ C = G		
2	Genetic information flows from DNA \rightarrow protein \rightarrow RNA		
3	The sugars and phosphates on one DNA chain are oriented upside down with respect to the direction of the sugars and phosphates on the other DNA chain		
4	During Translation, each transfer tRNA molecule delivers one specific amino acid to a ribosome as each codon on the mRNA is read.		
5	The function of ribosomes is to build a polypeptide by directly reading the DNA molecule 3 letters at a time.		
6	When reading the genetic code during Translation, there are actually 3 different STOP codons that are used to indicate that the polypeptide being produced is finished.		
7	The first step of Transcription is to make sure that only the tRNA with a complementery anticodon binds to the mRNA promoter .		
8	When reading the genetic code, it was discovered that there are many more amino acids than codons thus several different amino acids can be requested by the same codon		
9	The DNA backbone includes the sugar and the Nitrogen base		
10	When tRNA molecules arrive at a ribosome to deliver the requested amino acid, they first "park" at the P site of the ribosome and later will slide to the A site.		