Don't forget to check out the supporting videos

EOR#8

DIRECTIONS: Read 7.1 > 7.11 (photosynthesis) and answer the following questions

	motosyntnes	is chemical re	eaction below:	:			
			\rightarrow				
2. Draw a dia membrane, th Chlorophyll pig	ylakoid mem	brane, grana,	ow and label t	_			brane, inner uctures that contai
3. Does the O CIRCLE? Expla				-		original CO2 o	r H₂O reactant
1. Identify wh during photosy		•	fer energy and	d electrons fr	om the light	reactions to	the Calvin cycle
5. Complete		ow summariz 	ing the wavel		ble light: (7.0	5) 	380
5. Complete Wavelength (nm)	the table belo		ing the wavele	engths of visi 550			380
5. Complete Wavelength	750	orange		550	Blue	Indigo	

___ A water molecule is split to release oxygen and a replacement electron for P680 chlorophyll

_ The excited photosystem 1 electron joins a NADPH molecule along with its energy

__ An energized P700 chlorophyll molecule releases its excited electron.

_ A chlorophyll pigment in photosystem 2 absorbs a photon of light energy

Pa	art 2 DIRECTIONS: Read chapter 6 (Cell Respiration) and answer the following questions:
1.	Write the cellular respiration chemical reaction below: (6.3)
	++++
2.	<u>WHAT</u> is Glycolysis, <u>WHERE</u> does it occur in a cell, and how many <u>NET ATP</u> are produced? (6.6, 6.7)
3.	Study <u>section</u> and <u>figure</u> 6.10 carefully and then explain exactly how mitochondria use the OXYGEN (i.e., Do you know why you breath OXYGEN?)
4.	Explain how exposure to <u>cyanide</u> or carbon monoxide can kill a cell? (6.11)
5.	. What causes bread dough to <u>rise</u> when baker's yeast is used in the recipe? (6.13)

Directions: Review the assigned Cell Energy reading by indicating whether each statement below is T/F and the textbook page where the answer can be found.

After Textbook reading Cell Energy Statements (Chapters 6 & 7) page T/F During strenuous activities like sprinting, muscle cells can quickly supply the 1 needed ATP using a type of anaerobic respiration called lactic acid fermentation 2 Pyruvate molecules produced during glycolysis each contain 4 carbon atoms 3 Most of the ATP made during aerobic respiration is produced during glycolysis Oxygen is crucial for a cell's survival because it is the only molecule that can 4 break apart an ATP molecule to release the energy for the cell When electrons fall down an electron transport chain, H+ ions also move across 5 the membrane through various transport proteins using facilitated diffusion The carbon atoms needed to produce glucose during photosynthesis come from 6 CO₂ molecules that enter the chloroplast during the Calvin cycle Both photosynthesis and cellular respiration reactions involve the use of ATP 7 molecules for energy storage as energy is processed in the cell Plant leaves are usually green because that is the color that chlorophyll molecules 8 use the most during photosynthesis 9 Plants release O₂ that is produced when glucose molecules are broken down 3 CO₂ molecules are produced for every Acetyl CoA molecule that enters the citric 10 acid cycle