

EOR 11 (chapter 9B)

DIRECTIONS: Read sections **9.11** \rightarrow **9.23** (**SKIP 9.17** \rightarrow **9.19**) in the textbook and answer the following questions:

1) Define Incomplete Dominance patterns of inheritance and then explain an example of a trait determined by Incomplete Dominance in <u>flowers</u> and <u>humans</u> with both sentences and diagrams . (see Figure 9.11A & 9.11B)									
Incomplete Dominance =									
An Example of ID in <u>flowers</u> is:				Diagram:					
An Example of ID in <u>humans</u> is:					Diagram				
	2) Human blood type is a trait that is determined by multiple alleles . (i.e., The human "gene pool" for blood types contains more than 2 possible alleles that any given human could inherit.) List the 3 different <u>alleles</u> that determine human blood types:								
3) Sur	3 Blood T ALLEL mmarize in the TA	ES	ow all the dif	ferent h	numan t	olood type ge] notyj	pes and phenotypes.	AS (III)
G	enotypes:								
Pl	nenotypes:								
4) If a	man with B blood	l has a cl	hild with a wo	oman w	ith AB	blood, what i	s the	chance the child will have	O bloodExplain?
5) Wo	ould you rather be <u>l</u>	homozy	gous or <u>heter</u>	ozygou	ı <u>s</u> for th	e sickle-cell	mutat	tion Explain WHY?	
	s the tropical disea ing in Africa		_	sickle-c	cell mu	tation become	e mor	re or less common in the ge	ene pool for persons

7)	Explain why two	identical twins with	the exact same skin	tone genotype might ha	ve <u>different</u> skin tone phenotypes ?

8) Define a **Sex-linked** trait and explain the $\underline{\text{symptoms}}$ for 3 different human sex-linked disorders.

Sex-linked trait is:

Sex-linked disorder	Symptoms
1	
2	
3	

Directions: Review the assigned heredity reading by indicating whether each Heredity statement below is T/F and the <u>textbook page</u> where the answer can be found.

	Heredity Statements (Chapter 9B)	After reading T/F	Textbook page
1	The gender of a baby chicken is determined by which sex chromosome the <u>hen</u> puts in the egg.		
2	Men have a higher rate of Sickle-cell Anemia than women		
3	It is NOT possible for a woman to be colorblind		
4	Persons <u>heterozygous</u> for hypercholesterolemia have about the SAME levels of blood cholesterol as persons who are <u>homozygous</u> for hypercholesterolemia		
5	It is NOT possible for a man to be a healthy hemophilia carrier		
6	When pink snapdragon plants are crossed with pink, the next generation will have red, white, and pink flowers in equal 1/3 ratios.		
7	It is safe to give a transfusion of O blood to a person with B blood.		
8	After a malaria infection, African American men are immune from inheriting the Sickle-cell mutation.		
9	Sickle-cell Anemia can be cured with a series of blood transfusions		_
10	If a man has Duchenne Muscular Dystrophy (DMD), he CANNOT give it to his sons.		