BTR Protein-Making Review 1. Complete the Comparison Matrix below to compare the similarities and differences between DNA and RNA molecules | Molecule Characteristics | DNA | RNA | S = Shared characteristic D = Different characteristic | |---|------------|---|---| | STRUCTURE: | | | | | • # of chains in molecule? | | | | | • chains are made of Nucleotide "Building Blocks"? | | | | | • molecule has Phosphate groups? | | | | | • molecule has 5-C sugars? | | | | | • molecule has Nitrogen bases? | | | | | • molecule has covalent bonds? | | } | | | • molecule has hydrogen bonds? | | *************************************** | | | • name of the 5-C sugar molecule? | | | | | • List the 4 Nitrogen base letters | | | | | FUNCTION: | | | | | stores genetic instructions for making proteins? | | | | | • delivers Amino Acids to ribosomes for protein production? | | | ************************************** | | LOCATION: | | | | | • molecule found in the nucleus? | - Common A | | | | • molecule found in the cytoplasm? | | | maga tagan na maga na ang ang ang ang ang ang ang ang a | | • molecule found in both nucleus and cytoplasm? | | | | | 2. | How many total chromosome "book | of DNA are found in the nucleus of a typical human cell | ? | |----|---------------------------------|---|---| |----|---------------------------------|---|---| - 3. Approximately how many total DNA code letters are there in one complete human blueprint? - 4. What term describes a "piece" of DNA letters which code for the production of a specific protein chain? - 5. Identify the process labeled by #5: - 6. Identify the process labeled by #6: 7. TRANSCRIPTION review: Transcribe the DNA gene below and determine the mRNA sequence. DNA Code: A C A T C T G G A C A G mRNA: TRANSLATION review: Identify the numbered parts in the translation picture below | Finat
base | u u | Codons
Second
C | n mRNA
Dase | Theodorn | Third
base | |---------------|---|-------------------------------------|--|--|---------------| | u. | UUU Phenyialanine UUA Leucine UUG | UCU
UCO
UCA
UCG | UAU Tyrosine
UAC Stop
UAA Stop | UGU Cysteine
UGC Stop
UGG Tryptophan | TO A G | | C | CUU
CUC
CUA
CUG | CCU
CCG
CCA
Proline
CCG | CAU Histidine
CAC CAA Glutamine | CGU
CGC
CGA
CGG | U
C
A | | 3. A | AUU
AUC isoleucine
AUA .
AUG – Start | ACU
ACC
ACA
ACG | AAU Asparagine
AAC Asparagine
AAA Lysine | AGU Serine
AGC AGA
AGG Arginine | 0 ₹ 0 | | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU Aspartic
GAC Acid
GAA Glutamic
GAG Acid | GGU
GGC
GGA
GGQ | U 0 € G | | 8. | | |-----|---| | 9. | | | 10. | | | 11. | | | 12. | | | 13. | | | 14. | *************************************** | | 15. | | 16. 17. 18. Circle the protein chain produced in the translation picture above