TNT Review

MATCHING: Match each question or description to the MOST correct term or # in the word bank. You may use some terms or #'s more than one time if needed.

Word Bank

1	AdeninenucleusCytosineribosomeUracilmitochondriaGuaninetranslationThyminetranscription24,0006 billion		nucleotide	amino acid	DNA
2			backbone	polypeptide	gene
3			phosphate group	chromatin	mRNA
4			5-C sugar	chromosome	tRNA
23			Nitrogen-base	Codon	covalent bond
46			double helix	Anti-CODON	hydrogen bond
	DNA	#1		#2	rotein

- _____ 1. The process of making a **m**RNA copy of a DNA gene code. (see diagram above $\rightarrow \#1$)
 - 2. The process of converting a mRNA code into a specific protein chain. (see diagram above \rightarrow #2)
 - 3. The total number of nitrogen base letters found in one human blueprint?
 - 4. Which Nitrogen base is found in RNA but NOT in DNA?
 - 5. Which Nitrogen base is found in DNA but NOT in RNA?
- _____6. The name for the 20 "building block" molecules linked to form **protein** chains
- _____7. The name for the "L-shaped" "building block" molecules which form RNA or DNA chains.
- 8. How many chains or strands of N-base letters are found in a mRNA molecule.
- 9. How many chains or strands of N-base letters are found in a DNA molecule.
- 10. A sequence or short piece of DNA letter codes which determines a specific trait for an organism
- 11. A series of CODONS one after another are located on what type of molecule in a cell?
- _____ 12. Which molecule transfers "like a taxi" ONE specific Amino Acid "passenger" ?
- _____13. The process of Translation occurs where in a cell as mRNA is used to make a protein?
- ______ 14. The process of **Transcription** occurs <u>where</u> in a cell as the DNA is copied into mRNA ?
- _____15. According to the DNA base pairing rules, which nitrogen base is the complementery match for cytosine?
- 16. How many Nitrogen base letters (in a row) are in a CODON and an ANTICODON ?
- _____17. How many total chromosomes are required to contain the complete human blueprint of 6 billion letters ?
- _____ 18. How many hydrogen bonds connect Adenine and Thymine ?
- _____19. How many hydrogen bonds connect Cytosine and Guanine?
- 20. After replication, DNA strands shorten and coil into "X-shaped" structures called ?
- _____ 21. The term for DNA's "twisted ladder" shape of 2 spiraled chains
 - 22. Deoxyribose is which of the 3 parts of a DNA "building block"?
 - 23. Term for the outside, alternating sugar and phosphate groups in the DNA structure ?
 - 24. The actual DNA "blueprint" code is found in the order of the ______ in the DNA structure ?
 - _____25. The total number of gene codes found in one human blueprint?

- *** Use the Translation Diagram and CODON Table below for questions 26-34. ***
 - 26. List your favorite **STOP** or **terminate** CODON from the table
 - _____ 27. Identify the molecule labeled as **#27** in the diagram
 - _____ 28. Identify the molecule labeled as **#28** in the diagram
 - _____ 29. Identify the molecule labeled as **#29** in the diagram
 - _____ 30. What are the 3 CODON letters for #30 in the diagram
 - _____ 31. What are the 3 Anti-CODON letters for #31 in the diagram
 - _____ 32. What is the Amino Acid labeled #32 in the diagram
 - _____ 33. What is the Amino Acid labeled #33 in the diagram
 - _____ 34. What is the Amino Acid labeled #34 in the diagram

Codons in mRNA									
First base	U	Second C	cond base A G						
U	UUU UUC UUA UUA Leucine	UCU UCC UCA UCG	UAU UAC UAA UAA Stop	UGU UGC UGA – Stop UGG – Tryptophan	UCAG				
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC Histidine CAA CAG Glutamine	CGU CGC CGA CGG	UCAG				
A	AUU AUC AUA AUG-Start	ACU ACC ACA ACG	AAU AAC AAA AAG Lysine	AGU AGC AGA AGG Arginine	UCAG				
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Aspartic GAC Acid GAA Glutamic GAG Acid	GGU GGC GGA GGG	UCAG				

- 35. Number the steps of <u>transcription</u> below in the correct sequence:
 - ____ The mRNA strand arrives at the ribosome and awaits the arrival of the tRNA.
 - Each letter of the DNA code is read by RNA Polymerase and complementary RNA nucleotides are added across from each DNA letter.
 - ____ The completed mRNA strand breaks away from the DNA and leaves the nucleus. The DNA strands "re-zip" and "re-wind".
 - _____ Helicase enzymes unwind and unzip the DNA.
- 36. Number the steps of <u>translation</u> below in the correct sequence:
 - ____ The tRNA taxi cab parks at the ribosome across from the codon by showing its matching anticodon
 - _____ The mRNA codon is read and a tRNA taxi cab picks up the required amino acid.
 - ____ The ribosome links all of the amino acid passengers together until a stop signal is reached.
 - _____ The tRNA drops off its amino acid passenger and then the empty tRNA leaves to find another amino acid passenger.